Virtualisierung und Grid Computing, FhG Stuttgart, 27.5.2008

Enterprise Grids

Status, Vorteile, Strategien, Herausforderungen, Empfehlungen

Wolfgang Gentzsch

DEISA Distributed European Infrastructure for Supercomputing Applications

Duke University, Durham, North Carolina

RENCI Renaissance Computing Institute, University of Chapel Hill, North Carolina

IT Transition heute

Old World

Static

Silo

Physical

Manual

Application

New World

Dynamic

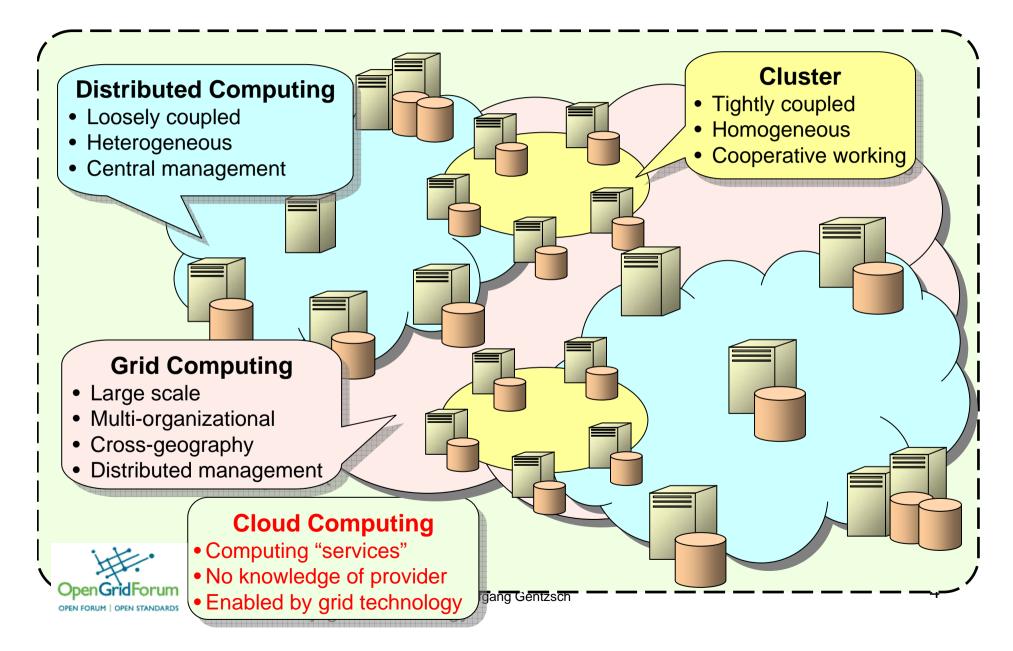
Shared

Virtual

Automated

Service

Transitioning from Silo Oriented Architecture to


Service Oriented Architecture

Von traditionellen IT Inseln zum IT Outsourcing

- Independent distributed IT islands, historically grown
- IT re-centralization, standard processes, virtualization, autonomic comp.
- Mixed model: central IT plus 'cycle steeling' (PC Grids)
- Campus & Enterprise Grids (OGSA, EGA Ref, DRMs, Globus, policy engine driven, monitoring/acctg/billing/reporting)
- Resource providers, utility model (Sun, IBM, HP, etc)
- For specific apps: Application service portals, ASPs & GSP
- Rich market for computational services, e-science, e-business
- Complete outsourcing of IT services

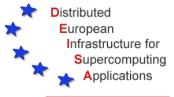
Whatever grid business model you choose, this does not mean to give up IT responsibility!

Grid Szenarien . . .

... und ihre Vorteile

- Resource Utilization: increase from 20% to 80+%
- Productivity: more work done in shorter time
- Business Agility: flexible actions and re-actions
- On Demand: get resources, when you need them
- Easy Access: transparent, remote, secure
- Sharing: enable collaboration over the network
- Failover: migrate/restart applications automatically
- Resource Virtualization: compute services, not servers
- Heterogeneity: platforms, OSs, devices, software
- Virtual Organizations: build & dismantle on the fly

TERAGRID


Grids in der Forschung

ppenlab for DataGrid applications

Grid Solution for Wide Area Computing and Data Handling

超高速コンピュータ網形成プロジェクト National Research Grid Initiative

国立情報学研究所グリッド研究開発推進拠点 NII -The National Institute of Informatics

Grids in der Industrie

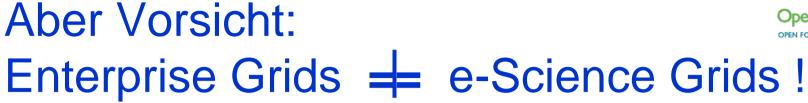
Schlumberger

BANKTONE.

Built on GE Heritage

NEESgrid





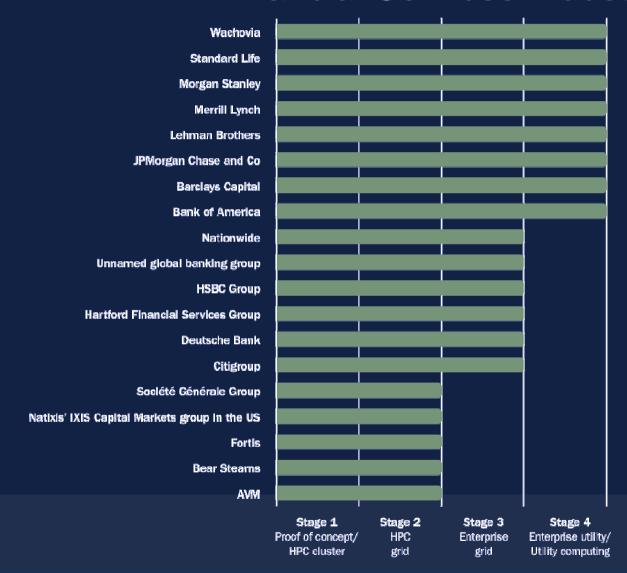
	e-Science ¹	Enterprise ²		
Goals	Scaling	Scaling		
	Compute Intensive	Compute & Transactional		
	Collaboration	Availability		
Problems	Application Development	Manageability		
	Immature Technology	Integration		
	Interoperability	Cost		
Solutions	Communities	Internal Org.		
	Internal Org.	Vendors		
from:	Vendors	Communities		

^{1 -} Includes e-Science users, infrastructure providers and funding agencies

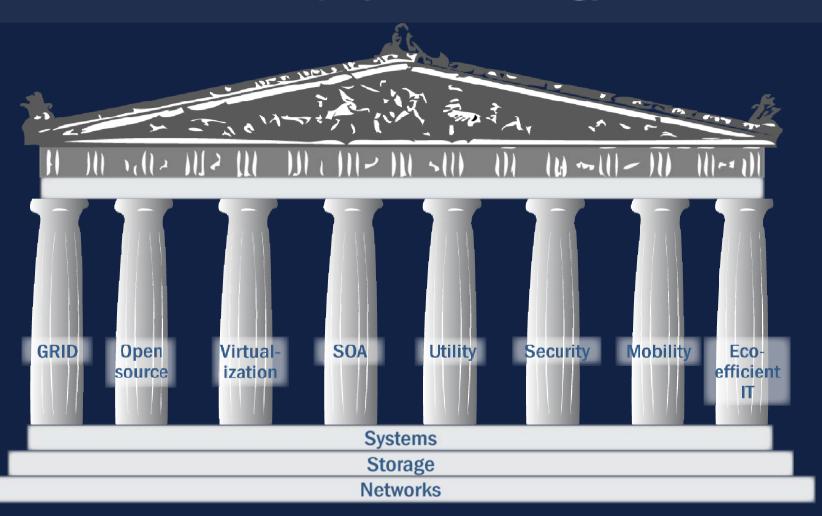
^{2 –} Includes Enterprise users and platform (hardware and software) providers (vendors)

OGF Umfrage 2008: Gründe für Grids Open Grid Forum Open FORUM | OPEN STANDARDS

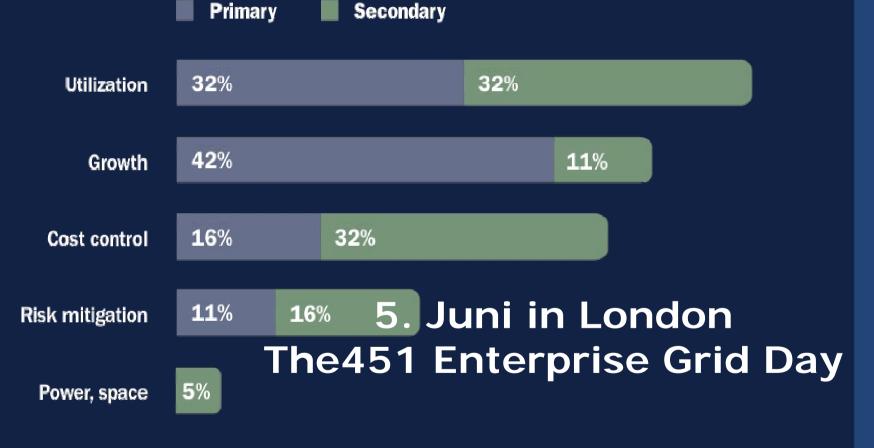
Feature	Rank (Score)							
	All	e-Science	Platform	S/W	Infrastructure Providers	Enterprise	Funding Agencies	Partners
	57	23	13	1	9	5	1	3
Scalability	1(51)	1(43)	1(64)	2(67)	2(37)	1(73)		3(33)
Inter Organizational Collaboration	2(29)	2(36)	6(15)		1(67)	7(0)		6(0)
Time to complete compute intensive job	3(27)	3(26)	4(18)		3(19)	5(20)		1(67)
Availability	4(23)	5(22)	2(33)	1(100)	5(15)	3(33)		6(0)
Scaling data processing	5(22)	4(23)	3(21)		7(11)	7(0)	1(100)	2(44)
Transactional Throughput	6(15)	8(7)	4(18)	3(33)	8(4)	2(47)		3(33)
Ability to complete computationally intensive job	7(14)	6(17)	8(8)		3(19)	6(7)	3(33)	5(22)
Resilience	8(9)	7(9)	7(13)		5(15)	7(0)		6(0)
Transactional latency	9(6)	9(1)	9(3)		9(0)	4(27)	2(67)	6(0)


OGF: Probleme bei Grids

Problem	Rank1							
	All	e-Science	Platform	S/W	Infrastructure Providers	Enterprise	Funding Agencies	Partners
	68	23	13	1	8	5	1	3
Application development	1(31)	1(36)	6(15)	2(67)	1(38)	11(0)	2(67)	2(33)
Immature technology	2(25)	2(30)	2(23)	4(0)	3(29)	11(0)	4(0)	1(67)
Management complexity	3(20)	6(14)	4(21)	4(0)	3(29)	1(50)	4(0)	4(22)
Interoperability	4(18)	3(23)	4(21)	4(0)	8(8)	6(17)	4(0)	2(33)
Platform integration	5(17)	9(10)	1(31)	4(0)	6(21)	3(25)	4(0)	6(11)
Management	5(17)	11(4)	2(23)	1(100)	2(33)	3(25)	4(0)	8(0)
Organizational or Inter-organizational alignment	7(16)	5(19)	8(13)	4(0)	5(25)	6(17)	4(0)	4(22)
Data exchange/sharing	8(14)	4(20)	8(13)	3(33)	10(0)	8(8)	4(0)	8(0)
Application complexity	9(11)	6(14)	6(15)	4(0)	10(0)	3(25)	4(0)	8(0)
Cost	9(11)	9(10)	11(3)	4(0)	7(13)	2(42)	1(100)	6(11)
Application scalability	11(10)	8(12)	8(13)	4(0)	9(4)	8(8)	3(33)	8(0)
Operational Efficiency	12(9)	12(0)	12(0)	4(0)	10(0)	11(0)	4(0)	8(0)
Lack of a common language	13(1)	12(0)	12(0)	4(0)	10(0)	8(8)	4(0)	8(0)
Vendor lock-in	14(0)	12(0)	12(0)	4(0)	10(0)	11(0)	4(0)	8(0)


FhG Forum 27.5.2008 Wolfgang Gentzsch 10

Enterprise Grid Status Financial Services Industrie


ECS Deployment Strategy

Enterprise Computing Strategy
The 451 Group

Business Trends: 2007 Financial Services Industrie

Haupt-Motivation für Grids

- Business getrieben -

1. Improve Agility and Responsiveness

- Accelerate time-to-market (speed)
- Better respond to changing business demands
- Ability to introduce new competitive offerings

2. Manage Service Levels

- Superior decision support and performance
- Greater availability and uptime

3. Reduce Costs

FhG Forum 27.5.2008

- Operating Costs (labor for ongoing development, integration, support and maintenance)
- Capital Costs (hardware and software)

Courtesy DataSynapse

IT-Hintergrund

1. Achieve a virtual, scalable application architecture

- Decouple application execution from infrastructure
- Achieve scale without overhead and complexity

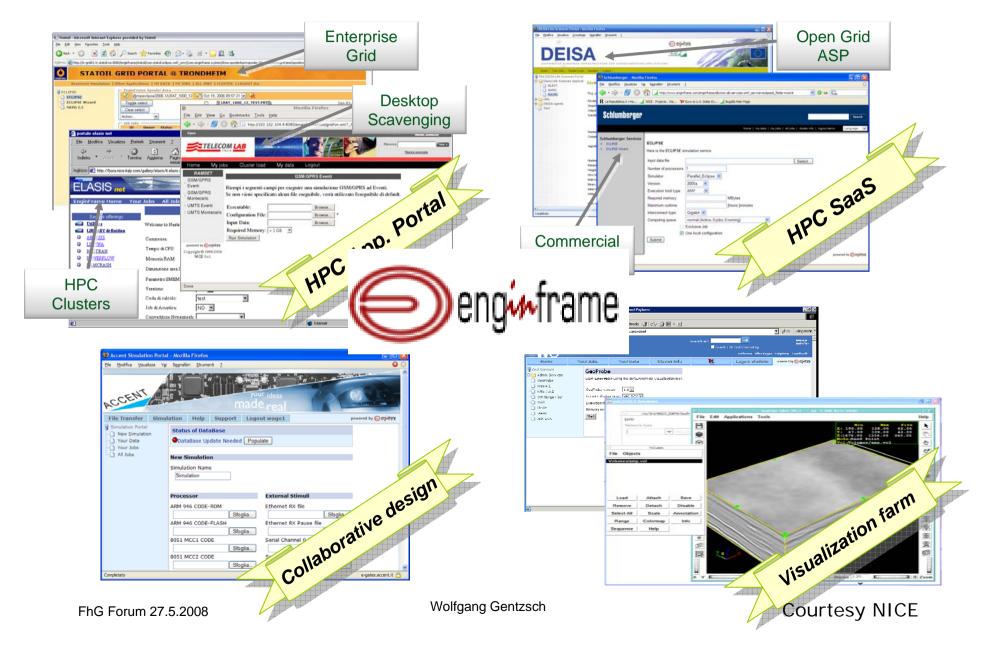
2. Self-managed, self-healing operating environment

- Policy and priority-based operation
- Increased availability and resiliency

3. Enable commodity, shared computing

- Leverage existing, underutilized infrastructure
- Migrate to lower cost infrastructure

4. Deliver IT as an adaptive service


Dynamically fulfill fluctuating performance requirements

5. Accelerate SOA

- Service-enable legacy applications
- Enable dynamic (versus static) service provisioning

Courtesy DataSynapse

Schlüssel zum Erfolg: Grid Portals

Grid Portals: transparent und nutzerfreundlich

Complex IT infrastructure

- Difficult to optimally leverage resources
- Different programs, applications, GUIs, OS, SAN, SOA

Data management and security

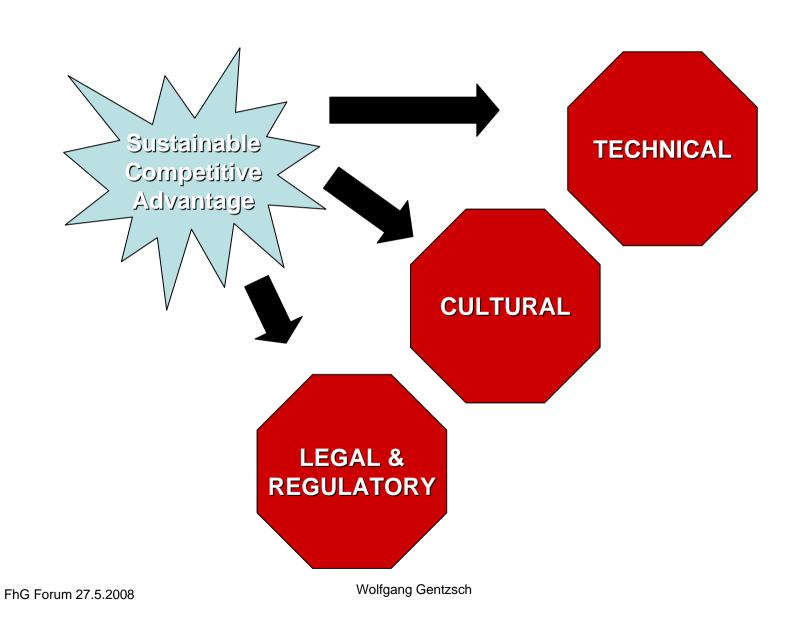
- Timely, consistent, transparent data access
- Controlled access for IP protection

Teamworking and collaboration

- Complex, slow, ad-hoc collaboration
- Identity management

New business opportunities

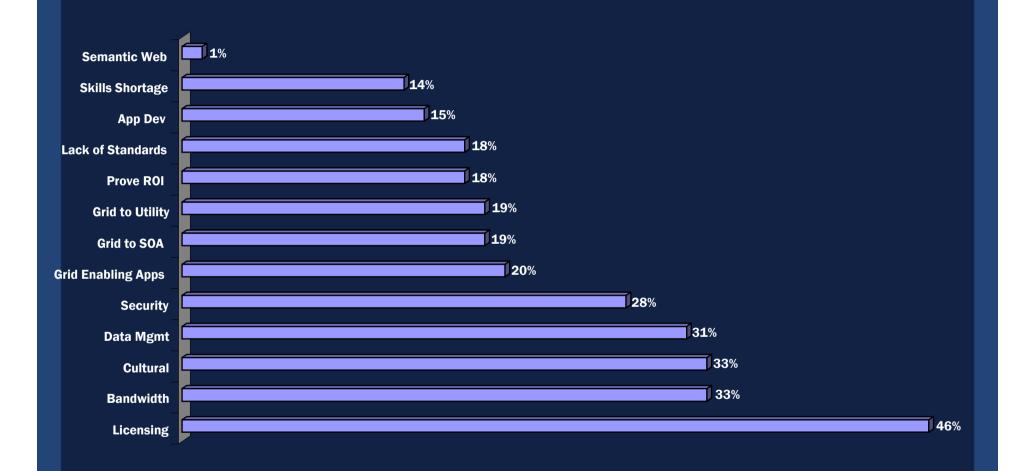
- ASP, compute-on-demand, HPC consolidation
- Experience sharing and leveraging



Identifziere Business-Herausforderungen

- ► Time-to-market pressures vs. quality products
- Multiple, concurrent projects
- ▶ Projects with different schedules and milestones
- Overlapping demands for resources
- ► Large and growing data sets
- ► Larger, more complex product designs
- Not enough throughput
- ► Low utilization of compute resources
- ► Insufficient in-house IT expertise
- ► Increasingly complex operations management
- ► Heightened focus on budget/TCO/ROI

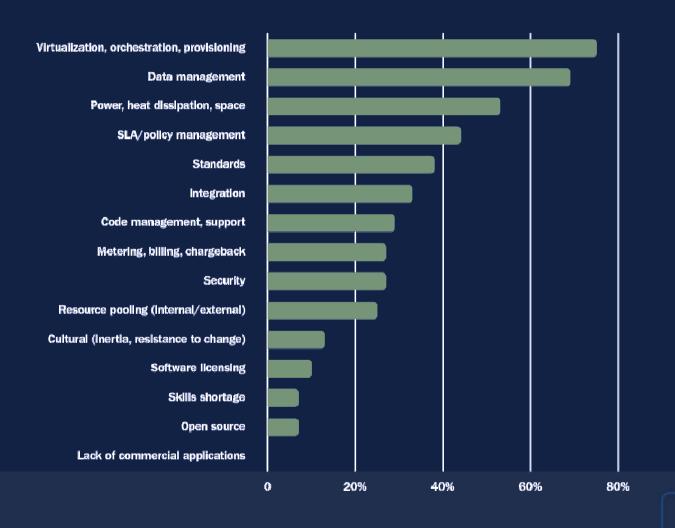
Grid-Herausforderungen



19

Grid-Herausforderungen

- Sensitive data, sensitive applications (medical patient records)
- Different organizations have different ROI
- Accounting, who pays for what (sharing!)
- Security policies: consistent and enforced across the grid!
- Lack of standards prevent interoperability of components
- Current IT culture is not predisposed to sharing resources
- Not all applications are grid-ready or grid-enabled
- Open source is not equal open source (read the little print)
- SLAs based on open source (liability?)
- "Static" licensing model don't embrace grid
- Protection of intellectual property
- Legal issues (FDA, HIPAA, multi-country grids)


Herausforderungen: 2003-06 (cross-sector)

Herausforderungen: 2008

Financial Services Industrie

Fragen über Fragen

- What are my next research / business challenges ?
- Can my existing IT infrastructure still cope with these challenges?
- Or do I need a SOA and/or Grid architecture ?
- > Or should I outsource, and if so, to what extend?
- ➤ How can I learn about **MY** SOA / Grid ????
- ➤ Are there (similar) use cases? → Can I learn from others?
- > Do I have the experts, or do I need external consultation?
- What is the right strategy to build and operate it?
- > How will Grid change my current, proven SLAs?
- How to / how much / who will pay for it ?

We will try to answer (part of) these questions here . . .

'Meine' Top 10 Empfehlungen

Rule 1: Identify your specific benefits.

Rule 2: Evangelize your decision makers first.

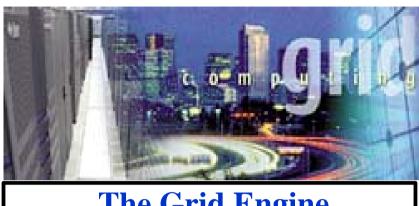
Rule 3: Don't re-invent wheels.

Rule 4: KISS (Keep It Simple and Stupid).

Rule 5: Evolution, not revolution.

Rule 6: Establish a governance structure.

Rule 7: Money, money, money.


Rule 8: Secure some funding for after the project.

Rule 9: Try not to grid-enable your apps in the first place.

Rule 10: Adopt a 'human' business model.

Details: OGF Thought Leadership Series at

http://www.ogf.org/TLS/index.php

The Steam Engine

Danke!