Relevance for Pharma Research

Fraunhofer

Institute Algorithms and Scientific Computing

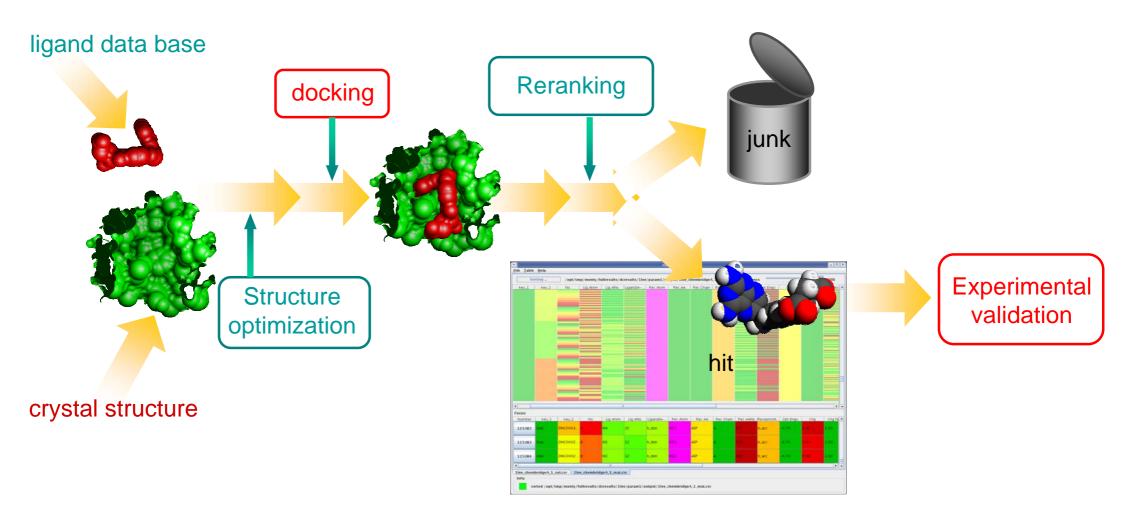
Prof. Dr. Martin Hofmann-Apitius

Head of the Department of Bioinformatics

Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) and

Bonn-Aachen International Center for Information Technology (B-IT) / Friedrich-Wilhelms-University of Bonn

GRID Computing for Pharma R&D


- Distributed Virtual Screening the WISDOM Example
 - Basics of Structure-based Virtual Screening
 - Docking on the GRID: WISDOM and follow-up
- Text Mining on the GRID Information Extraction for Scientific & Competitive Intelligence
 - Scientific & Competitive Intelligence
 - Distributed information extraction from scientific literature

Basics of Structure-based Virtual Screening

Dataflow and Workflow in a Virtual Screening Experiment

- Not a new idea
- Simple task farming approach possible
- Routine procedure at Novartis and other pharma front runners
- In EnterpriseGRID solutions typically based on proprietary middleware platforms (e.g. United Devices (UD); Plattform Computing)
- Success stories available e.g. identification of cyclin dependent kinase inhibitors published by Novartis
- Close interaction between *in silico* and "wet" laboratory world required

Docking on the GRID: WISDOM and follow-up

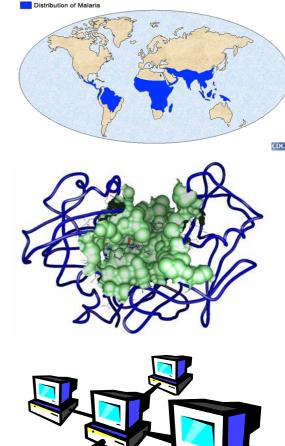
WISDOM : Wide In Silico Docking On Malaria

Biological goal

Proposition of new inhibitors for a family of proteins produced by Plasmodium *falciparum*

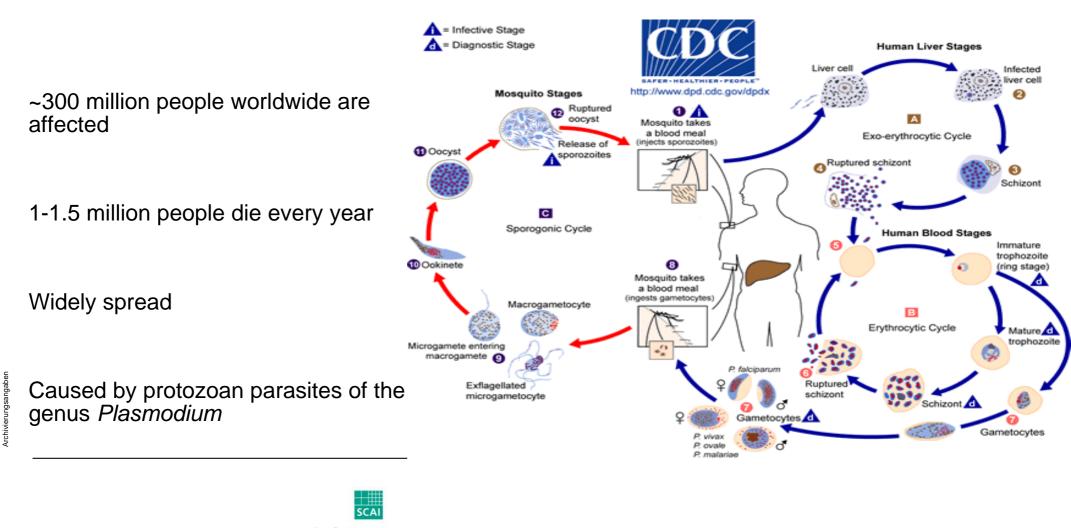
Biomedical informatics goal

Deployment of in silico virtual screening on the grid

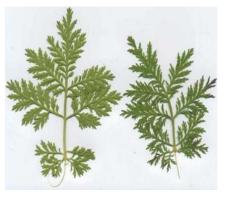

Grid goal

Ð	
õ	
0	
_	
8	
22	
23	
_	
_	
=	
d)	
·	
>	
<u> </u>	
0	

Deployment of a CPU consuming application generating large data flows to test the grid operation and services


 \rightarrow "data challenge"

Introduction to the Disease : Malaria


Strong Need for New Drugs against Malaria (WHO)

Drug resistance has emerged for all classes of antimalarials except artemisinins.

- Resistance to chloroquine, the cheapest and the most widely used drug, is spreading in almost all the endemic countries.
- Resistance to the combination of sulfadoxine-pyrimethamine which was already present in South America and in South-East Asia is now emerging in East Africa

All countries that experience resistance to conventional monotherapies should use ACTs (artemisinin-based combination therapies)

But there is even the threat of resistance to artemisinin too, as it is already observed in murine Plasmodium *yoelii*

Seite 9

Archivierungsangaber

Identification of New Plasmodium Targets

There is consensus that substantial scientific effort is needed to identify new targets for antimalaria drugs

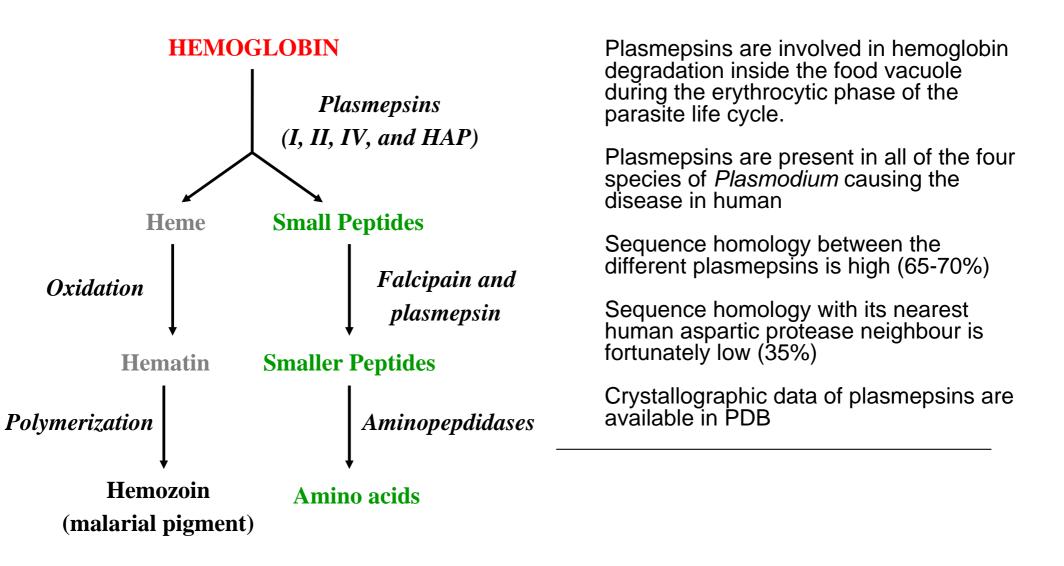
With the advent of the Plasmodium genome, many targets came into light

The potential anti-malarial drug targets are broadly classified into three categories, and each category has many individual targets.

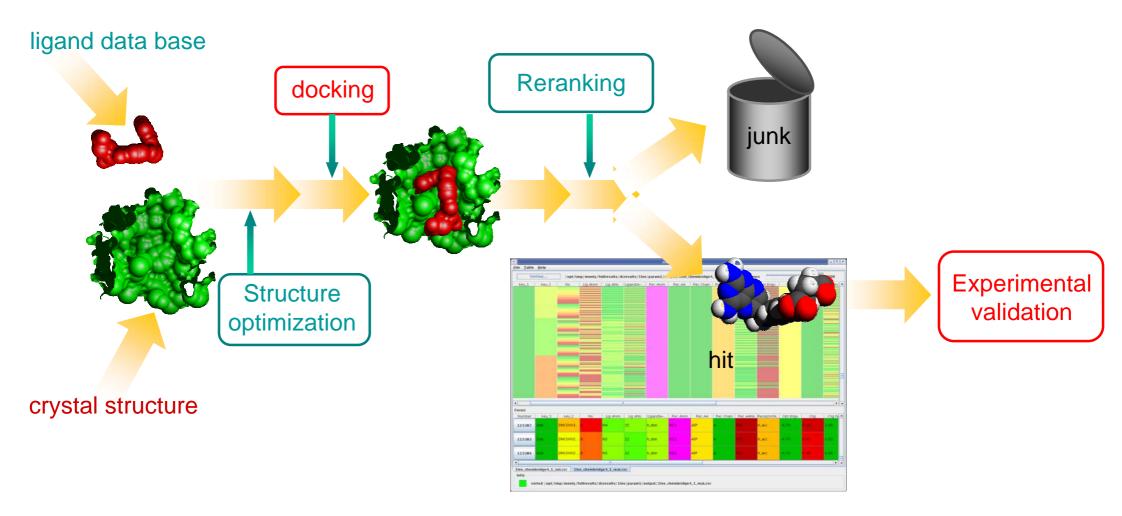
□ Targets involved in human hemoglobin degradation (proteases)

□ Targets involved in parasite metabolism (Folate, phospholipid...)

□ Targets engaged in parasite membrane transport and signalling (choline carrier etc).


WISDOM focuses on hemoglobin metabolism and especially on Plasmepsin II and Plasmepsin $\ensuremath{\mathsf{IV}}$

Seite 10



nhofer _{Institute} Algorithms and Scientific Computing

Plasmepsins and Their Role in Human Hemoglobin Degradation

Dataflow and Workflow in Virtual Screening (by Docking)

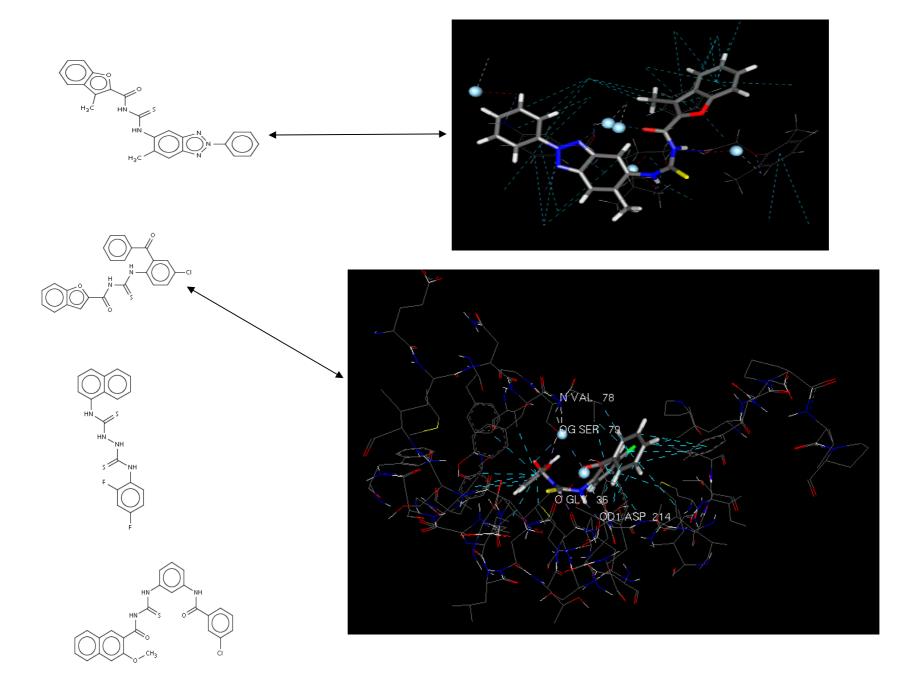
EGEE, the World's Largest Grid Infrastructure

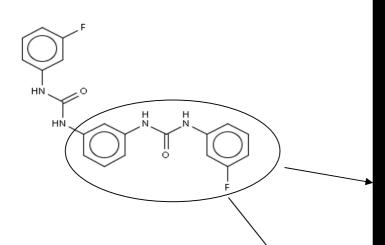
Started in 2004, +70 partners in the world

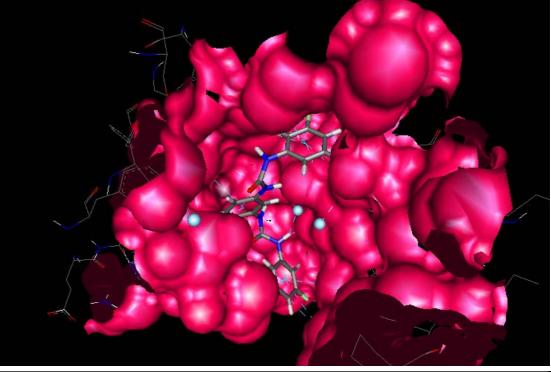
Project leader : CERN

6 scientific domains with >20 applications deployed

BioMed VO 27 Computing Elements (~3.000 CPUs) 28 Storage Elements (~21 TB disks) in 12 countries

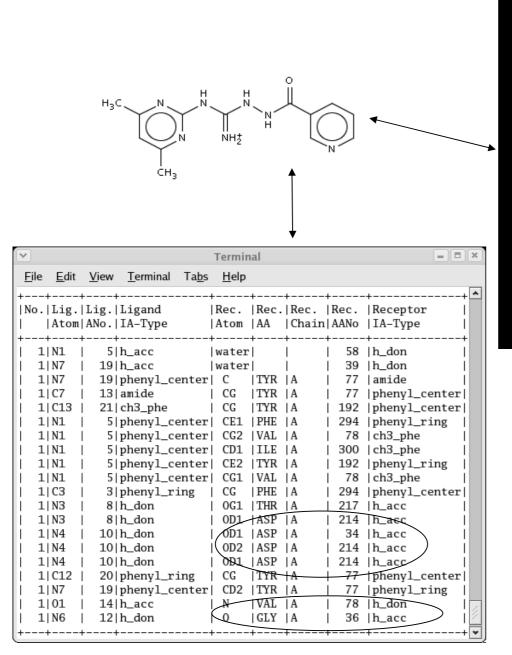

170 grid nodes, 17000 CPUs, several PetaBytes of data, 10000 jobs by day

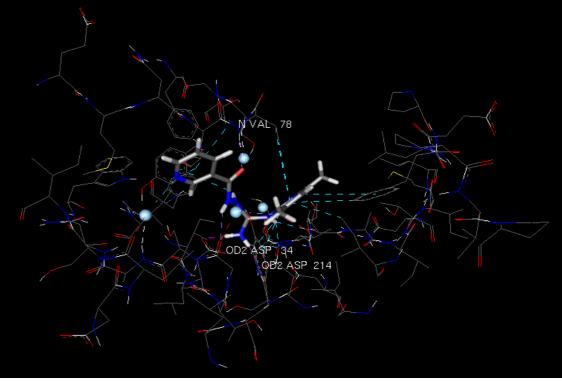

VS Explorer: a Tool for Analyzing "Grid Scale" Ranking Lists


∑ File Table Help	mainWindo	W					- (= X)					
/home/bio/groupshare/dcprep/dcprep_results/param.csv: 400 R	0.v <u>v</u> s		144									
Number SMILES name scenario1 scenario2	_ [¥]					mainWind	low					
			dcprep/dcprep_resu	ulte (naran	n cour 400 Por				4			
	Number	SMILES					scenario4			rio7 scenario	8 cconario	9 scenario10
	Tumber		liane	scenario	r scenarioz	scenarios	scenario4	scenarios	cenanoo scen	anor scenano	o scenario:	, scenario o
	25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ZINC00603011	-28.92	-29.88	-28.66	-28.08	-27.14 -	28.66 -28.0	8 -28.91	-28.92	-29.88
	26		ZINC00605829	-19.20	-17.29	-19.49	-24.32	-20.74 -	19.49 -24.3	2 -19.20	-18.66	-17.29
	27		ZINC00606383	-9.60	-8.35	-10.59	-12.48	-10.59 -	10.45 -12.1	9 -10.45	-10.45	-8.35
Focus: Number SMILES name scenario1 scenario2 scena			ZINC00607811	+00.01	+00.01	+00.01	+00.01	+00.01 +	00.01 +00.	01 +00.01	+00.01	+00.01
62 JINC0062 +00.01 -14.24 +00.0	Focus:											•
63 JINC0062 +00.01 -15.52 +00.01	Number	SMILES	name scenario:	1 scenar	io2 scenari	o3 scenar	io4 scenar	io5 scenari	o6 scenario	'scenario8	scenario	9 scenario1(
	398	12	abelara -13.80	-13.64	-13.55	-14.66	-13.55	-13.55	-14.63	-13.80	-13.80	-13.64
64 ZINC006235.64 -37.31 -37.16	399		:pp_min -6.48	-6.55	-6.27	-6.55	-7.04	-7.04	-6.34	-7.04	-7.04	-6.51
llee_chembridgeE_97654_sol.csv param.csv	400	9.4 II	mn -18.78	-18.10	-17.50	-19.67	-16.91	-16.91	-19.67	-19.34	-20.34	-17.95
Info:		8										
loaded /home/bio/groupshare/dcprep/dcprep_results/pa		1bridgeE_97654	_sol.csv param.cs	5V		IIf						
		oaded /home/bi	io/groupshare/dcpr	ep/dcprep	o_results/par	am.csv						

Compounds for MD - Thiourea compounds

Compounds for MD-Urea compounds





Note: Diphenyl urea compounds are well in agreement with literature (Walter Reed compounds)

ſ	~				Termin	al			
	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>T</u> erminal Ta <u>b</u> s	<u>H</u> elp				
					•		•		Receptor * IA-Type
	i 1	N4	21	h_don	water	I	i	120	h_acc
	1	C18	25	phenyl_ring	CG	PHE	A	294	phenyl_center
	1	C15	22	pheny1_center	CE1	PHE	A	294	phenyl_ring
۱ ا	1	C15	22	phenyl_center	CG2	VAL	A	78	ch3_phe
1	1	C8	11	phenyl_center	C	THR	A	217	amide
	1	C8	11	phenyl_center	C	GLY	A	216	amide
	1	C8	11	phenyl_center	CD1	ILE	A	32	ch3_phe
	1	C8	11	phenyl_center	CG2	ILE	A	32	ch3_phe
	1	C8	11	phenyl_center	CE	MET	A	15	ch3_phe
	1	01	9	h_acc	OG	SER	A	79	h_don
	1	N1	7	h_don	0	GLY	A	216	h_acc
	1	C2	2	phenyl_ring	CG	TYR	A	77	phenyl_center
	1	C1	1	phenyl_center	CD1	ILE	A	123	ch3_phe
	1	C1	1	phenyl_center	CD2	TYR	A	77	phenyl_ring
	1	C1		phenyl_ring	ee	TYR	A	77	phenyl_center
	1	N3	18	h_don	OD2	ASP	A	34	h_acc
	1	N3	18	h_don	OD1	ASP	A	34	h_ace
	1	C15	22	phenyl_center	CE2	TYR	A	192	phenyl_ring
	1	C15	22	phenyl_center	CG1	VAL	A	78	ch3_phe
	1	N4	•	h_don	OD1	ASP	A		h_acc
	1	C20	27	phenyl_ring	CG	TYR	A	192	phenyl_center
	1	C15	22	phenyl_center	CD1	ILE	A	300	ch3_phe
- 1	+	+	++	+	+	+	+	+	++ +

Compounds for MD- Guanidino compounds

Note: Satisfied all criteria, good binding mode, interactions to key residues, good score, appropriate descriptors.

Conclusions

- Virtual Screening is a straightforward approach to use the GRID in the pharma context
- Virtual Screening has been successfully used in EnterpriseGRIDs in the pharma industry and recently also on a large eScience infrastructure, the EGEE GRID
- Novel, promising candidate structures for the development of new anti-malarial drugs have been identified using GRID-based virtual screening
- WISDOM has initialized a series of follow-up projects that address other diseases such as avian bird flue
- The relevance of virtual screening approaches on the GRID has been proven; uptake by small and medium size pharma companies is still too slow

Text – Mining on the GRID –

Information Extraction for Scientific & Competitive Intelligence

Seite 19

Scientific & Competitive Intelligence

Seite 20

What is Scientific & Competitive Intelligence ?

- Scientific and competitive intelligence are terms coined for the application of automated information mining methods
- Information mining ranges from improved document retrieval to full blown information extraction
- Goal of the pharmaceutical industry is to make sure that **all** relevant information is at hand when a decision about a drug development project is to be made
- Consequently, scientific and competitive intelligence encompasses not only text mining in PubMed abstracts, but extends to patent literature and business news streams

Seite 21

Protein Name Recognition

Multiple names for one gene	F12A	Neuronectin, GMEM, tenascin, HXB, cytotactin, hexabrachion
Ambiguous names in databases		p21, EPO, large T antigen
Ambiguous acronyms		WAS, STEP, iCE, StAR
Common word names		Interleukin 1 alpha Tumor necrosis factor beta
Multi-word terms		
Spelling variants	COL1A1	Collagen, type I, alpha 1 Collagen alpha 1(I) chain
Permutations	CO	Alpha 1 collagen Alpha-1 type I collagen
Nested protein names		TNF receptor 1 collagen, type I, alpha receptor

Archivierungsangaben

		1
PMID-	11210439	
OWN -	· NLM	
STAT-	medline	
DA -	20010208	
DCOM-	20010405	
LR -	20031114	
VI -	23	
IP -	• 1	
DP -	2001 Jan	
TI -	Fluid loading in rats increases serum brain natriuretic peptide concentration.	
PG -	93-5	
AB -	Hyponatremia after subarachnoid hemorrhage has been linked to high plasma	
	concentration of atrial natriuretic peptide and brain natriuretic peptide.	
	Volume expansion therapy to prevent symptomatic vasospasm, such as intensive	
	hypertensive and hypervoremic thera NPPA: atrial natriuretic peptide ncentration	
	of these peptides. We therefore examine provide repride secretion	
	in rats in response to acute volume expansion, infusing to 10 ml of saline	
	over 1 h. In the 10 ml group, brain natriuretic peptide concentrations	
	showed a significant increase from pre-infusion concentrations 1 h after	
	initiation of infusion, but had begun to fall 1 h later. We suspect that	
	high plasma concentration of brain natriuretic peptide after subarachnoid	
	hemorrhage is partly caused by hypervoremic therapy.	
AD -	Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu	
	University, 3-1-1 Maidashi, Higashi-ku, 812-8582 Fukuoka, Japan. s-inoha@ns.med	
FAU -	Inoha, S	
AU -	Inoha S	eite

Chemical Name Recognition

Dictionary names:

Brand names

Organic chemical compounds

Generic names, INN, USAN

Substance classes

Side groups, atoms and ions

Pharmacological and biological effects

Regular expressions:

Ariven, Extren, Clivarin

2-Acetoxybenzoic acid

Aspirin, Celecoxib, Heparin

secondary amine, cholin sulfates

butyl group, potassium, fluoride anion

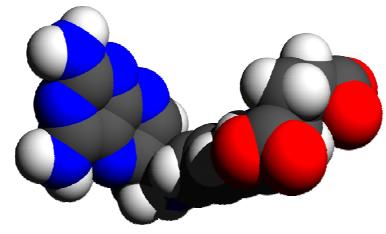
Cyclooxygenase inhibitor, Anticoagulants

N-[2-[4-[(2-oxy cyclohexyl)methyl]-

Archivierungsangaben

IUPAC names

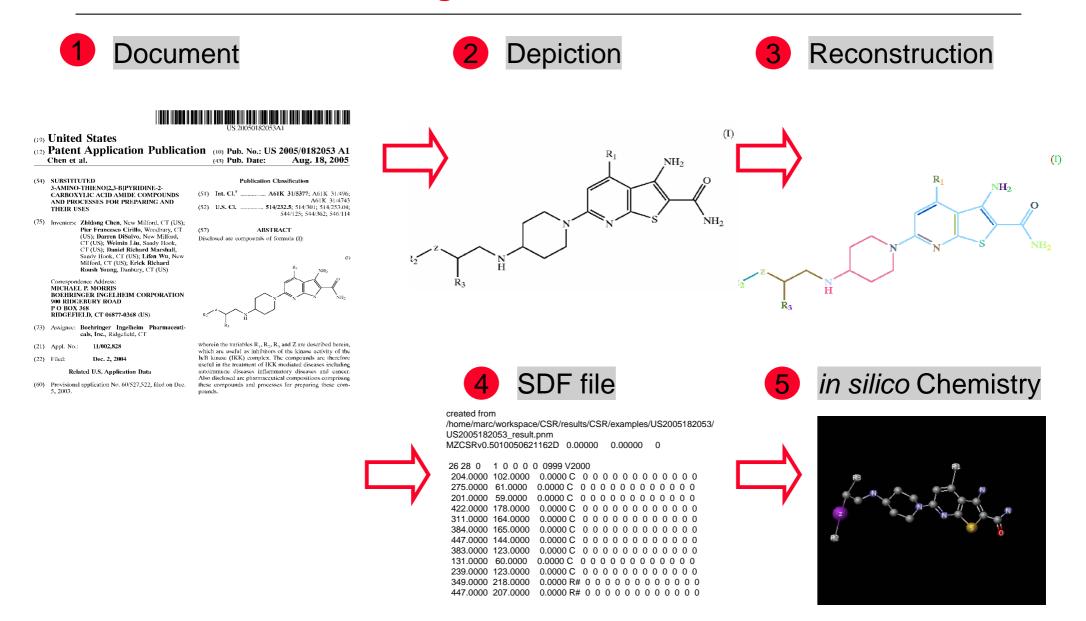
Seite 24


SCAI

Sources: ChEBi; DrugBank; MeSH; text mining

Representations of Chemical Compounds

- □ Name (trivial, trade, brand, INN, USAN)
- □ Registration numbers (CAS, NCI, Beilstein)
- □ Formal description (sum formula, SMILES)
- □ Chemical nomenclature (IUPAC, CAS, InChI)
- Depictions



Fraunhofer Institute Algorithms and Scientific Computing Seite 25

Chemical Structure Recognition – an Overview

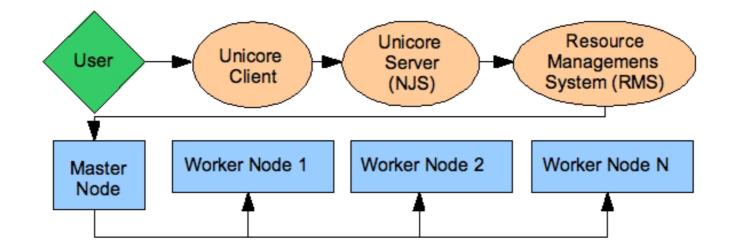
Distributed information extraction from scientific literature

Seite 27

Distributed Documents and Scaling

- □ MEDLINE comprises currently more than 16 million abstracts
- More and more publications available as full text (open access) and in institutional repositories
- Patent literature comprises more than 50 million full text patents; approximately 13% containing information on chemistry, biology and pharmacology
- In pharma companies, most relevant information is still available in free text (e.g. information on clinical studies; FDA / BfArM registration)
- Thousands of news streams and millions of websites comprise valuable information on innovations

Unstructured Information Management Architecture (UIMA)


- □ Service Oriented Architecture / framework proposed by IBM
- □ Rapidly adopted by commercial and academic tool provider in the area of text mining
- □ Supports the assembly of complex annotation workflows
- Annotators might be entity recognition systems, part-of-speech-analysis modules and other type of unstructured information processing tools

Seite 29

□ UIMA standardizes text and image mining (UIMA not restricted to pure text)

Distributed information extraction from scientific literature

Seite 30

Lessons Learned

GRID is an emerging topic for the pharmaceutical industry

- The WISDOM project has demonstrated, that the GRID is well suited to support large scale virtual screening experiments; making virtual screening a "killer app" for biomedical GRIDs
- □ In a completely different field, namely text mining and information extraction, the GRID will enable us to deal with both, distributed documents and compute-intensive tasks

Seite 31

□ Text Mining on the GRID might be the next biomedical GRID "killer app"

Thank you for your attention

Seite 32

